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ABSTRACT 

This paper is the second part of a two paper 
series exploring the application of two advanced 
computing techniques: artificial neural networks 
(ANNs) and genetic algorithms (GAs), to the 
problem of structural parameter identification for 
an idealised model of an aircraft wing.  

In this paper, genetic algorithms are used to 
determine an idealised finite element model that 
is representative of the wing of the Pilatus PC-9/A 
trainer aircraft. This is achieved through an 
optimisation process that attempts to match the 
static and dynamic response of the model to 
measured aircraft structural responses. A number 
of approaches were trialed with improvements 
made to each successive approach in an attempt to 
find a suitable unique parameter set.  

Structural parameters were found for a three-
element model which has characteristics very 
similar to those of the PC-9/A wing. A 
comparison is also provided between the 
performance of the neural network and genetic 
algorithm approaches.   

 
INTRODUCTION 

Engineering is preoccupied with representing 
real world structures in an idealised mathematical 
environment. In order to have a Finite Element 
Model (FEM) of an aircraft structure that is 
tractable for static and dynamic analyses, it is 
beneficial to represent the aircraft structure using 
a simple model [4]. Over the past three decades, 
there has been a growing body of research 
dedicated to finding the best means of creating 
such simplified models that adequately describe 
the true behaviour of the structure.  

Parameter identification is the task of finding 
values for quantities which are required to create 
a mathematical model which adequately 
represents a structure or object. This paper 
presents a parameter identification procedure for 

determining the structural (i.e., stiffness and 
mass) properties of a simple model such that it is 
representative of an actual aircraft. The model 
was constructed from relatively simple beam or 
frame elements, making the process of idealising 
such a complex aircraft structure a challenging 
one. 

 The problem was complicated by the limited 
data available for the aircraft being analysed. For 
the PC-9/A trainer aircraft flown by the Royal 
Australia Air Force (RAAF), data was available 
in the form of natural frequencies and mode 
shapes of the main wing, a mass distribution, and 
static deflection data. Given this unique 
combination of available data, it was necessary to 
find a parameter identification procedure that was 
adaptable enough to cope with this particular 
situation. 

 
BACKGROUND 

Since their development, genetic algorithms 
[1] have been used to solve a wide variety of 
problems ranging from the design of an optimal 
jet engine [3], control in a gas pipeline [2,3], 
modelling of natural evolutionary systems [2], 
and more recently in the arena of aircraft 
parameter identification. 

Perhaps the most relevant and applicable work 
performed in this area, has been by Dunn [4-8], 
who has successfully utilised genetic algorithms 
to solve an optimisation problem which attempts 
to match the frequency response of an idealised 
aircraft model, to frequency response data 
obtained through modal testing or from a more 
complex finite element model. Whilst this 
approach and the data utilised are slightly 
different from the problem here, the versatility of 
the method presented by Dunn, and the adaptable 
nature of genetic algorithms, suggested they were 
suitable for the application to the parameter 
identification of the PC-9/A. 
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GENETIC ALGORITHMS  
Genetic algorithms are a form of stochastic 

function optimisation recognised for their ability 
to solve optimisation problems having an 
irregular state space. They utilise a family of 
individual members representing solutions to the 
optimisation problem, which can be manipulated 
over successive generations, until an optimum 
solution is discovered. At each generation, 
members with admirable traits, or those that are 
deemed as having a high level of fitness (as 
determined by a specified fitness or evaluation 
function) are retained and bred with other 
individuals of high fitness. The result is such that 
admirable traits are ‘passed down’ through 
generations, with the less fit members generally 
being eliminated. The procedure used to select the 
individuals who will become the parents of the 
next generation is governed by a selection 
function and weighted chance. The selection 
procedure has a significant impact on the outcome 
of the genetic algorithm. Once selection has taken 
place, the new generation is produced through the 
use of genetic operators, the most common of 
which are crossover and mutation. The use of 
both operators is beneficial, and generally results 
in reduced likelihood of solutions remaining stuck 
in local minima or maxima. The genetic algorithm 
progresses through generations, returning the 
fitness of the best member of the population, until 
particular termination criteria are met. 

A Genetic Algorithm Optimisation Toolbox 
(GAOT) [9] developed in MATLAB was used to 
provide the required GA functionality. Parameters 
defining the type and extent of crossover and 
mutation, and type of selection function were 
chosen to be the defaults associated with the 
GAOT. The genetic algorithm was initialised with 
a randomly generated population of members 
comprised of values for design variables which 
fall within a range specified for each variable. For 
optimisations presented here, populations 
consisting of 100 randomly generated members 
were used. Larger populations were tested with no 
significant improvement in the performance of the 
optimisation process. 

 
MODEL DEVELOPMENT 
The Aircraft 

The Pilatus PC-9/A is a two seat trainer 
aircraft of conventional configuration. It has a 
wingspan of 10.12 m, a length of 10.17 m, and an 
empty weight of approximately 1700 kg. It is 
powered by a Pratt & Whitney PT6A-62 

turboprop engine of 950 shp, and is capable of a 
maximum speed of 300 kts. A diagram of the 
PC-9/A can be seen in Figure 1. 

 

 
Figure 1. Pilatus PC-9/A aircraft. 

 
Available Data 

The methods which could be utilised to 
determine structural parameters for an idealised 
model of the PC-9/A, were limited by available 
aircraft data. Four important data sets were 
available. 

Ground Vibration Test (GVT) Data. The 
ground vibration test data was measured using an 
RAAF PC-9/A. Testing was only completed on 
the wing of the aircraft, yielding natural 
frequencies and mode shapes for three bending 
modes (1st symmetric, 1st antisymmetric and 2nd 
symmetric).  

Static Deflection Data. Static deflection 
testing was carried out by DSTO on a PC-9/A 
airframe in a fatigue test rig. Digital 
photogrammetry was used to measure the 
deflections of over 200 points on the aircraft, in 
response to eight load cases. Applied force and 
resulting deflection data was available. 

 
The Model 

The idealised model used to represent the 
wing of the PC-9/A, was constructed from planar 
beam elements and varied in configuration 
depending on the method utilised to determine the 
properties associated with the PC-9/A wing. In 
cases where static deflection data was used, a 
cantilever model of a wing semi-span, as shown 
in Figure 2(a) was chosen to represent the wing. 
The model shown here has three elements, each 
with different properties, and constant length. The 
number of elements can vary in order to obtain 
the optimum model. When mode shape or natural 
frequency data was used, a symmetric full span 
model subject to no boundary conditions, as 
shown in Figure 2(b), was chosen. 
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(a) cantilever model for static data

(b) free model for dynamic data  
Figure 2. Idealised wing models. 

 
PARAMETER ESTIMATION USING GAs 

The goal of the task here was to find stiffness 
and mass properties for a model comprised of 
planar beam elements, which are used to represent 
the wing of the PC-9/A aircraft. The stiffness and 
mass properties required include: 

• bending stiffness, EI 
• mass per unit length, ρA 
• rotational inertial per unit length, ρI 

 
The problem was formulated as an 

optimisation task, which traditionally involves 
establishing design variables or parameters which 
can be modified in order to change the model, 
state variables which provide an indication of the 
current state of the model, and a fitness or 
evaluation function, which is usually a function of 
the state variables, and provides a measure of how 
good or fit a particular solution is. 

In this case, the design variables are the 
stiffness and mass properties mentioned 
previously, whilst the state variables are 
quantities which are part of or can be determined 
from available data pertaining to the PC-9/A. It is 
also necessary that these quantities can be 
calculated using the finite element model. 

The evaluation function compares state 
variables calculated using the finite element 
model to those determined from the available 
data. The evaluation function was therefore of the 
form: 
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where J is the value of the evaluation function, A 
is a parameter or state variable available for 
comparison, n is the number of parameters and 
the subscripts m and d refer to parameters 
determined from the finite element model or the 
available data respectively. The evaluation 
function is negative as the genetic algorithm 
toolbox utilised is designed to maximise the value 

of the evaluation function. The evaluation 
function specified above will therefore minimise 
the difference between the model and data values 
of the state variables when its value is a 
maximum. 

 
Optimisation Procedure 

The choice of evaluation function can have a 
significant impact on the results of the 
optimisation process. Therefore, a number of 
approaches were trailed which used evaluation 
functions comprised of various combinations of 
state variables in order to determine the required 
structural parameters. 

For each approach, four models possessing 
from N=1 to N=4 elements per semi-span were 
used. For each of these cases, 20 runs of the 
genetic algorithm were carried out resulting in 20 
possible solutions. Of these 20, the solution with 
the lowest evaluation function value was deemed 
to be the best solution. 

Approach 1. The first approach utilised an 
evaluation function which compared finite 
element model results with natural frequencies, ω, 
mode shapes, U, and total mass of the PC-9/A 
wing, mw, in order to estimate both the mass and 
stiffness properties of the idealised model. Thus, 
the design variables were the mass and stiffness 
properties of each element, and the state variables 
were the first three natural frequencies, mode 
shapes, and wing mass. These variables therefore 
comprised the components of the evaluation 
function.  

A depiction of the operations required in order 
to determine the state variables which make up 
the evaluation function, can be seen in Figure 3. 
In this figure, K and M represents the system 
stiffness and mass matrices respectively.  

 
 

calculate K
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evaluation 
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Figure 3. Approach 1 flow chart. 

The natural frequencies of the models 
representing the best solution for each case can be 
seen in Table 1. The results are presented in the 
form of normalised frequencies which are natural 
frequencies of the model divided by the 
fundamental frequency of the PC-9/A aircraft. 
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Table 1. Approach 1 - normalised frequencies. 

Finite Element Model Value Meas. 
Data N=1 N=2 N=3 N=4 

  Normalised Frequencies 

w1m/w1d 1.00 1.00 1.00 1.00 1.00 
w1m/w1d 2.74 2.74 2.10 2.74 2.74 
w1m/w1d 3.36 5.47 2.71 2.95 3.04 

  Percentage Error (%) 
w1m/w1d 0.00 -0.27 0.21 0.03 0.18 
w1m/w1d 0.00 0.02 -23.44 0.00 -0.03 
w1m/w1d 0.00 62.89 -19.24 -12.36 -9.54 

 
It can be noted from Table 1 that the quality of 

the solutions in terms of their ability to match the 
natural frequencies of the PC-9/A, improved 
significantly as the number of elements increased. 
Both the N=3 and N=4 cases could both be 
deemed satisfactory. It should also be noted that 
in all cases, the genetic algorithm was able to 
match the wing mass to within less than 1%. 

Upon viewing results for each of the 20 
solutions, however, it was evident that significant 
uncertainty existed. A depiction of each of the 
solutions, showing the results for EI, ρA and ρI 
for each element in the three element or N=3 case 
can be seen in Figure 4.  

It can be noted from this figure that the 
solutions vary over a significant range, indicating 
that the genetic algorithm is struggling to find a 
unique solution. This trait was evident regardless 
of the number of elements used for the model, and 
is generally associated with an attempt to glean 
more information from the available data than it is 
possible to extract. 
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Figure 4. Approach 1 – design variables vs. 

element number. 

Thus, as only a small degree of confidence 
could be placed in the genetic algorithm’s ability 
to determine a unique solution given the 
conditions used in this approach, it was necessary 
to modify the approach in an attempt to improve 
this result. 

Approach 2. The second approach was 
similar to the first, but involved modification of 
the model to include a lumped mass at its 
centreline to represent the inertial characteristics 
of the fuselage, engine and empennage of the 
aircraft. This lumped mass was comprised of only 
a translational inertia, and excluded a rotational 
inertial component for the reasons outlined below. 

Table 2 shows a comparison between the 
normalised natural frequencies of the PC-9/A 
wing and those of a continuous beam having 
constant properties along its length. Whilst the 
first two natural frequencies are similar, the third 
is significantly different, meaning that to produce 
a model constructed from continuous beam 
elements that is representative of the PC-9/A, 
significant changes must be brought about in the 
distribution of the natural frequencies through 
changes in the design variables.  

Although a simple solution to this problem 
would be alteration of just the third natural 
frequency, no mechanism exists to change only 
this frequency without influencing the others. 
Thus, the frequency distribution must be altered. 

This can be achieved by either increasing the 
second natural frequency relative to the first and 
third, and then reducing all the natural 
frequencies, or by increasing the first and third 
and then increasing all the natural frequencies. 
 

Table 2. Natural frequencies of PC-9/A wing vs. 
continuous beam. 

Normalised Frequency (Hz) Mode 
PC-9/A Wing Continuous Beam 

1 1.00 1.00 
2 2.74 2.76 
3 3.36 5.40 
 
Inclusion of a lumped mass assists this process 

because the translational inertial will only 
influence the first and third (or symmetric) 
frequencies, whilst the rotational inertial will only 
influence the second (or anti-symmetric) 
frequency. So, when a lumped mass is included, 
the genetic algorithm attempts to resolve the 
frequency spacing issue by increasing the value of 
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the translational inertia indefinitely, and reducing 
the value of the rotational inertia to zero. 

 This is obviously not desired, and as a result 
the translational inertial was set at a fixed value 
equal to the empty weight of the aircraft minus 
the mass of the wing, while the value of the 
rotational inertia was set to zero, effectively 
excluding it. The translational inertial was 
retained, as it was noted that its inclusion did 
improve the genetic algorithm's ability to find a 
satisfactory solution.  

Approach 3. This approach utilised an 
evaluation function based only on static deflection 
data. As this data was not influenced by the 
inertial properties of the aircraft, it could only be 
used to determine stiffness properties for the 
model. To calculate the state variables required 
for comparison in the evaluation function, force 
and moment data, F, for each of the load cases 
was converted to nodal loads and applied to the 
finite element model. The resulting deflections 
and slopes, d, were compared with the measured 
deflection data. A flow chart of the process 
involved can be seen in Figure 5. 
 

 calculate K 

applied forces F 

static 
analysis 

evaluation 
function 

EI 

d

model data

d

 
Figure 5. Flow chart for genetic algorithm 

Approach 3. 

 
In general, agreement between the values of 

the state variables calculated using the model, and 
those associated with the static deflection data, 
was quite good.  

There was also very little uncertainty in the 
solutions obtained, with stiffness values covering 
only a small range. This is quite possibly a result 
of the significant amount of data used in the 
evaluation function (i.e., deflection and slope data 
at each node for each for each load case), and the 
reduction in the number of parameters to be 
obtained. 

The stiffness values in this case were however 
significantly lower than those found using the 
previous approaches, the cause of which was 
discovered during development of Approach 4. 

Approach 4. It was realised that the values 
obtained for ρI in Approaches 1 and 2, were quite 
large. As this parameter represents rotational 
inertia associated with mass offset from the 

longitudinal axis of a beam element, it was 
decided that these values were significantly 
higher than is reasonable.  

In general, ρI only has an impact on the higher 
natural frequencies of a structure, which explains 
why large values were required in order to 
influence the first three natural frequencies of the 
model. 

Consequently, an approach was trialed which 
utilised the same evaluation function and 
procedure as Approach 2, but fixed the value of 
ρI for each element to zero, eliminating its 
influence. It was realised that this significantly 
reduced the values of EI obtained, making them 
comparable with those obtained using Approach 
3. This also had the benefit of reducing the 
number of parameters the genetic algorithm had 
to determine, increasing the chance of a unique 
solution being found, 

Approach 5. The final approach involved 
the combination of Approaches 3 and 4, such that 
as much data as possible could be used in the 
evaluation function in the hope of reducing the 
uncertainty associated with solutions in the 
previous approaches. This meant that static and 
dynamic data were included, and that the static 
problem and eigenvalue problem both needed to 
be solved in order to determine state variables 
required by the evaluation function. A flow chart 
of the process can be seen in Figure 6. 
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Figure 6. Flow chart for genetic algorithm 

Approach 5. 

 
Figure 7 shows a plot of the design variables 

vs element number for the three element case. It 
can be seen that the solutions are relatively well 
defined with significantly less uncertainty than is 
evident in the results from the first approach as 
shown in Figure 4. It is also evident that the value 
of EI has reduced significantly, due to the 
exclusion of ρI. 

The best member from the three element case 
was chosen as the final solution, for a number of 
reasons. Table 3 shows the normalised 
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frequencies of the best solutions from each case 
(i.e., N=1-4). The N=3 case possesses the smallest 
errors of each of the solutions.  
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Figure 7. Approach 5 – design variables vs. 

element number. 

 

Table 3. Approach 5 - normalised frequencies. 

Finite Element Model Value Meas. 
Data N=1 N=2 N=3 N=4 

  Normalised Frequencies 

w1m/w1d 1.00 0.61 1.00 1.00 0.97 
w1m/w1d 2.74 2.74 2.60 2.69 2.72 
w1m/w1d 3.36 5.58 3.74 3.60 3.70 

  Percentage Error (%) 
w1m/w1d 0.00 -39.04 0.01 -0.04 -3.14 
w1m/w1d 0.00 0.00 -5.14 -1.88 -0.72 
w1m/w1d 0.00 66.16 11.28 7.25 10.20 

 
In addition, Figure 8 shows a comparison of 

the standard devation of the values of EI and ρI 
obtained from the 20 solutions for each case. The 
standard deviation provides a measure of the 
spread of the results obtained, and therefore gives 
some indication of the degree of uncertainty in the 
solutions. A lower standard deviation should 
therefore provide greater confidence that a unique 
solution has been obtained. 

It can be noted that the standard deviation 
increases as the number of elements increases, 
indicating greater solution uncertainty, however 
as Table 1 and Table 3 show, as the number of 
elements increases so to does the solution 
accuracy. The N=3 case therefore represents a 
compromise between solution accuracy and 
solution uncertainty. 
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Figure 8. Comparison of standard deviation for 

Approach 5. 

 
Performance of Approaches 

Another interesting comparison can be made 
by viewing the standard deviation of the values of 
EI and ρI obtained in the N=3 case for each of the 
approaches, as shown in Figure 9. It can be seen 
that the successive improvements made to the 
approaches significantly reduced the standard 
deviation and therefore the solution uncertainty. 
Approach 3 possessed the least uncertainty, 
however it was incapable of determining inertial 
properties. 
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Solution  
Table 4 below shows the values for the 

stiffness and mass properties of the chosen 
solution. It can be noted that the values for 
bending stiffness and mass per unit length 
decrease as they shift outboard, as would be 
expected in an aircraft with a tapering wing.  
 

Table 4. Material and section properties for 
experimental model. 

Property Elem. Value Units 
EI 1 6.84×106

EI 2 4.16×106
Bending 
Stiffness 

EI 3 0.97×106

N.m2 

ρA 1 72.192
ρA 2 70.421

Mass per 
unit Length 

ρA 3 15.715

kg/m 

Centreline Mass mlm  1266.2 kg 
 
COMPARISON WITH ANNs 

This section deals with the comparison 
between the application of artificial neural 
networks and genetic algorithms to the aircraft 
structural parameter identification problem, in 
particular to the case of determining an idealised 
model of the PC-9/A. In order to facilitate such a 
comparison, the reader to referred to the first part 
of the two-paper series undertaken by Trivailo 
et.al. [10], which highlights the application of 
neural networks to the aircraft structural 
parameter identification problem. The nature of 
the data available for the PC-9/A is unsuitable for 
use in the neural network-based method (see 
[10]); hence a direct quantitative comparison 
between the two methods cannot be made. 
Instead, the comparison is limited to being 
qualatitive only. 

The main advantages of ANNs are their 
massively parallel architecture and ability to learn 
and generalise [11]. Their input/output mapping 
capability, robustness and ease at accomodating 
non-linearity also render them attractive for 
parameter identification problems [10]. 
Alternatively, the global search capabilities, 
inherent non-linearity, robustness and familiar 
optimisation implementation of GAs are valuable 
attributes for their application to the parameter 
identification problem. Common to both methods 
is the disadvantage associated with being unable 
to guarantee that the parameters identified will 
yield a structure that is physically representative. 
The need for an accurate and highly 

representative data set for ANN training is the 
main disadvantage associated with ANNs for 
parameter identification [10], whilst the need to 
recast the optimisation process every time the 
parameter identification process needs to be 
undertaken is an inherent shortfall associated with 
GAs.  

Application of GAs to the structural parameter 
identification of the PC-9/A demonstrates that 
GAs are better suited to problems when available 
data relevant to the problem under consideration 
is limited. It is here that one can take advantage of 
the adept global search capabilities of GAs to 
elucidate a unique solution that for most practical 
problems is difficult to achieve. While the 
training of an ANN requires a relatively large, yet 
highly accurate and representative set of data, 
which was not available in the case of the PC-
9/A, it is evident that the GA was still successful 
in determining a unique parameter set for the 
structure.  

Developmental and set-up times are generally 
lower for the case of GAs as compared to ANNs, 
due to the nature of the application of the two 
techniques. The implementation of GAs for 
parameter identification is essentially large-scale 
multi-objective optimisation, which has been 
extensively developed and is generally well 
known to engineers and scientists. On the other 
hand, the rather unorthodox and less familiar 
implementation of ANNs demands more time 
from the user to both learn and execute. Similarly, 
no training process is required when using GAs, 
simply execution, which also helps to reduce set-
up times.  

However, this may not always be the case and 
if certain circumstances change, it is possible for 
set-up and developmental times to be kept modest 
if one cleverly exploits the capabilities of ANNs. 
The learning and generalisation capabilities of 
ANNs are useful if and when the mechanical 
behaviour of the structure is to change for some 
reason. The effects of fatigue on an aircraft 
structure or a slight design or configurational 
modification may have a noticeable effect on its 
observed mechanical and modal response. Armed 
with a new set of data concerning the mechanical 
modal response of the structure, one may wish to 
identify a new parameter set for the structure. In 
the case of GAs, the entire optimisation process 
needs to be repeated, but for a correctly trained 
ANN, this new data set simply needs to be shown 
to the ANN, and a new parameter set for the 
structure will be returned almost instantaneously. 
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Here lies the power of the input/output mapping 
capability and robustness of ANNs. 

In light of the advantages and disadvantages 
associated with the application of the two 
procedures discussed above, it follows that a 
hybrid procedure encompassing both GAs and 
ANNs should be explored. Here the global search 
capabilities of GAs could be used to determine 
unique parameter sets for aircraft structures 
similar to that under consideration. Then the 
input/output mapping capability and robustness of 
ANNs could be utilised by using the 
aforementioned parameter sets found using GAs 
to train an ANN. This successfully trained ANN 
could then be used to recover the parameters of a 
structure as its observed mechanical and modal 
behaviour varies. This hybridisation eliminates 
the disadvantages of each individual procedure, 
whilst consolidating their strengths. The 
development of this hybrid artificial intelligence 
optimisation procedure to be applied to the 
aircraft structural parameter identification 
problem will be the subject of future research 
activities. 
 
CONCLUSIONS 

The second part of this two paper series 
presents a procedure that utilises genetic 
algorithms for determining parameters of an 
idealised aircraft model. The procedure is capable 
of determining structural parameters for a model 
constructed from planar beam elements such that 
calculated static response and dynamic 
characteristics match static deflection and ground 
vibration test data. A number of approaches were 
trialed before finding a suitable approach which 
provided a solution offering a reasonable 
compromise between solution accuracy and 
uncertainty  

The first part of this series described an 
attempt to use artificial neural networks to 
perform a similar task, and as such a comparison 
is provided between the advantages and 
disadvantages of each. A procedure which 
exploits the advantages of both procedures is 
proposed to further improve the performance of 
the parameter identification task. 
 
ACKNOWLEDGEMENTS 

The authors would like to acknowledge the 
support of the Defence Science Technology 
Organisation (DSTO), Australia, and in particular 
Dr. Douglas Sherman from the Platform Sciences 
Laboratory of DSTO.  

REFERENCES 
 

1. D. Goldberg, Genetic Algorithms in 
Search, Optimization and Machine Learning. 
Addison-Wesley, Reading, MA, 1989.  

2. S. Forrest, Genetic Algorithms: 
Principles of Natural Selection Applied to 
Computation, Science, Vol. 261, 13 August, 1993, 
pp. 872-878. 

3. J. H. Holland, Genetic Algorithms, 
Scientific America, July, 1992, pp. 44-50. 

4. S. A. Dunn, The Use of Genetic 
Algorithms in Dynamic Finite Element Model 
Identification for Aerospace Structures, 
Proceedings of the 20th Congress of the 
International Council of the Aeronautical 
Sciences, AIAA, Reston, VA, 1996, pp. 398-406. 

5. S. A. Dunn, Modified Genetic 
Algorithm for the Identification of Aircraft 
Structures, Journal of Aircraft, Vol. 34, No. 2, 
1997. 

6. S. A. Dunn, Optimisation of the 
Structural Dynamic Finite Element Model for a 
Complete Aircraft, 21st Congress of the 
International Council of the Aeronautical 
Sciences, AIAA, 13-18 September, Melbourne, 
Australia, 1998. 

7. S. A. Dunn, The Use of Genetic 
Algorithms and Stochastic Hill-Climbing in 
Dynamic Finite Element Model Identification, 
Computers & Structures, Vol. 66, No. 4, 1998, 
pp. 489-497. 

8. S. A. Dunn, Technique for Unique 
Optimisation of Dynamic Finite Element Models, 
Journal of Aircraft, Vol. 36, No. 6, 1999.  

9. C. Houck, J. Joines, and M. Kay, A 
Genetic Algorithm for Function Optimization: A 
Matlab Implementation, North Carolina State 
University, NCSU-IE TR 95-09,  1995. 

10. P. M. Trivailo, G. S. Dulikravich,  D. 
Sgarioto, and T. Gilbert, Inverse Problem of 
Aircraft Structural Estimation: Application of 
Neural Networks, Inverse Problems, Design and 
Optimization Symposium, Rio de Janeiro, Brazil, 
March 17-19, 2004, Paper IPDO-145. 

11. S. S. Haykin, Neural Networks: A 
Comprehensive Foundation, 2nd Ed., Prentice 
Hall, New Jersey, USA, 1999. – 842 pp. 


